A Fuzzy Based Approach for Estimating Agility of an Embedded Software Process

Tisni J.Kurian Avionics Systems Business Email :Tisni.Kurian@Lntsec.com

Disclaimer :L&T owns the rights of the Formulations and the material of this presentation .No part of the slides may be reproduced without written permission from L&T. Part of this material has already been published as given in Reference[2] [3][4] under a copyright agreement to L&T.

© 2011 Larsen & Toubro Limited : All rights reserved

Overview

- Defining Agility
- Need for Agility
- Some observations during implementation of agile techniques
- Development of New Agile Design Methodology
- Measuring Agility
- Conclusions

Agility: Key Requirement for RPD

Rapid Prototype Development Challenges are characterized by huge amounts of

uncertainty and risk. Situations are dynamic and unpredictable.

Agility is the ability of the Process to successfully cope with changes in requirement

Essence of Agility: Agile Capabilities

- Being agile requires **BOTH** the ability to, in a timely manner
 - recognize a relevant change in requirement
 - respond appropriately
- Being agile includes one or more of the following

Adaptability Flexibility Responsiveness Survivability Resilience Robustness Reflexive Requisite variety Nimbleness Innovativeness Learning Tolerance Re-configurability Re-engineering

Key Drivers

Results / Performance Objectives

Why do we need to be agile ?

- Global Competition is intensifying.
- Mass markets are fragmenting into niche markets.
- Cooperation among companies is becoming necessary, including companies who are in direct competition with each other.

Why do we need to be agile?

- Customers are expecting:
 - 1. Volume products
 - 2. High quality products
 - 3. Custom products
- Very short product life-cycles, development time, and production lead times are required.
- Customers want to treated and individuals

- Extensive Documentation
- Process Driven Methodology
- Puts Immense pressure on Developers
- Long Cycle time

- Rigid Platform
- Needs a large team to deliver
- Skipping Deadlines
- Expensive Business Models
- Stricter Avionics Standards

- Market Demands
- Faster Time to Market
- Fast Reaction to changing specifications
- Smaller Teams

- Shorter Deliver Cycles
- Less Confusion between Engineers and Customers
- Lesser cost of Development
- "Commissioned Yesterday instead of tomorrow"

- Has shown beneficial impact on quality , process , cost and development cycle
- Has resulted in better customer /user satisfaction levels
- Creates dynamic environment for rapid reaction to changing client specifications
- Platforms are more stable ,secure and interoperable

Some observations during implementation of agile technique

- Numerous Methods are available on web
- Difficult to choose a good method
- Expert Guidance not readily available
- No standardized method to measure the agility

Development of New Agile Design Methodology

- Developed an agility process called RAADM Ref[2]
- RAADM uses the combination of XP and DSDM Ref[2]

Difficult to measure agility

RAADM Process Model

G.E.C 2011

Essence of Agility: Measuring Agility

- Developing an operational definition of agility requires being able to measure the degree to which something is agile.
- A quantitative definition is desirable

Project Velocity and Agility Attributes

- Agility Metrics can be modeled using Project Velocity
- This velocity is resultant of two components
 - P_{v1} : Project Velocity without Requirement
 Changes

P_{v2} : Project Velocity Estimated when a Requirement change occurs

Project Velocity and Agility Attributes

✓ Only Incremental changes occur

 No major changes in the main base line

 Experience of domain experts necessary

 Domain Experts foresee the level of changes that might occur

Project Velocity and Agility Attributes

- Domain Experts classify those modules as probable risk modules
- Domain experts are also able to estimate the risks due to team configuration
- Code modularizing necessary
- Thereby tests required for any change is greatly reduced
- ✓ This makes process is adaptable

Project Velocity and Agility Attributes

- F(x) denotes estimates in man –days required for finishing the release when no requirement changes occur
- Let F(y) denote Estimate in Man Days required for finishing the release when requirement changes occur

$$\checkmark P_{v1} = \frac{d F(x)}{dt}$$

$$\checkmark P_{v2} = \frac{d F(y)}{dt}$$

$$(1) Ref [3][4]$$

Parameters that contribute P_{v1}

- Technical Complexity (TC)
- Documentation
- Programmer Capability(PC)
- Risk Impact(RI)
- Testing (T)
- Deadline (DL)

Parameters that Contribute to measure of P_{v2}

- Technical Complexity (TC)
- Documentation (D)
- Programmer Capability(PC)
- Risk Impact(RI)
- Testing (T)
- Deadline (DL)
- Requirement Change (RC)

- A fuzzy rule relating input variables xi denoting the parameters TC,PC,RI,T,DL,RC can be written
- Their linguistic values A^{~p} has values 'low, medium ,high'
- A_n^{p} can be related to the term project velocity P_{vj}

Fuzzy modeling of the agile process

• The rule base can be written as

IF
$$x_1^{\sim}$$
 is $A_1^{\sim p}$ and x_2^{\sim} is $A_2^{\sim p}$ AND... x_n^{\sim} is $A_n^{\sim p}$ THEN $P_{v_j}(x_i)$ is B_j
(2) Ref [3] [4]

where

The consequence of the rule B_i is a crisp value.

- $B_j = \sum b_i x_i + c_j$ (3) Ref [3][4] i = 1
- For a given rule , b_i denotes the weight and c_j represents the bias value

- The variable x_i = x₁ .. x_n denotes the set of parameters like TC,PC,D etc.
- The project velocity $P_{v_i}(x_i)$ will be

$$m \sum_{\substack{\sum w_{j} * B_{j} \\ j = 1}} W_{vj}(x_{i}) = (4) \quad Ref: [3], [4]$$

$$m \sum_{\substack{\sum w_{j} \\ j = 1}} W_{j}$$

 Here, w_j is the firing strength of each rule and 'm' is the number of rules.

- Similar rule sets can be written for P_{vi}(yi)
- yi represent the input variables when requirement change occurs.
- As $P_{vj}(xi)$ and $P_{vj}(yi)$ represent two disjoint values which are additive

- A crisp estimate for project velocity can be done
- Project velocity P_{v1}, P_{v2} can be computed using (2),
 (3) and (4).
- Hence , the overall project velocity is given by $\begin{array}{c}
 2 \\
 \sum P_{vi} * t_{i} \\
 i = 1
 \end{array}$ $P_{v} = \underbrace{\qquad} (5) \quad Ref [3] [4] \\
 2 \\
 \sum t_{i} \\
 i = 1
 \end{array}$

- Here i has values from 1 to 2, in the present study .
- P_{vi} denotes the project velocity components and has two values P_{v1} and P_{v2}
- The variable t_i represents the time interval for which the P_{vi} is calculated

- In (5) P_{vi} is a signed value
- Thus the overall project velocity $\rm P_v$ can decrease or increase
- This increase or decrease variation is based on the extent of requirement change
- Project velocity ' P_v ' gives a measure of agility.

Selection of Input Ranges for P_{V1} & P_{v2}

- Input Ranges are selected by proper analysis & design
- Experience of the Domain Experts is very useful
- Domain Experts in selection of the range of the inputs

Selection of Input Ranges for $P_{V1} \& P_{V2}$

- From experience it can be seen that PC,TC,D,DL,T,RI can always have a value which has a positive offset from ZERO
- Referencing to a standard project necessary

It is possible to arrive at a set of values for the above parameters

✓A ratio estimate

Input Ranges for P_{v1}

Attributes for P_{v1}	Ranges for P _{v1}
PC	[0.5 1]
TC	[0.2 1]
D	[0.3 1]
DL	[0.2 1]
Т	[0.4 1]
RI	[0.3 1]

-7

Input Ranges for P_{v2}

Attributes for P_{v2}	Ranges for P _{v2}
РС	[0.5 1]
ТС	[0.2 1]
D	[0.3 1]
DL	[-1 1]
Т	[0.3 1]
RI	[0.2 1]
RC	[0.3 1]

- The sugeno inference system modeled in MATLAB FUZZY TOOL BOX
- The membership functions were chosen as gaussian membership function
- Choosing a triangular membership function did not bring any significant change in output

- The Sugeno model for P_{v1} has 6 inputs and a rule base of 72 rules
- The Sugeno model for P_{v2} has 7 inputs and a rule base of 54 rules
- These rules are formulated based on experience of domain experts in handling similar projects.

- The membership functions mf_i that facilitate in determining P_{v1} and P_{v2} are set as linear type
- Weights for P_{v1} and P_{v2} are set as 1
- Their linear coefficients b_i are set equal to 0.5 and c =0

Attributes for P_{v1}	Inputs for P _{v1}
PC	0.75
ТС	0.48
D	0.63
DL	0.30
Т	0.80
RI	0.47

Attributes for P _{v2}	Inputs for P_{v2}
PC	0.75
ТС	0.60
D	0.65
DL	0.08
Т	0.80
RI	0.60
RC	0.50

- Sugeno Inference Engine calculated $P_{v1} = 8.39$
- Sugeno Inference Engine calculated $P_{v2}=1.94$
- For the project under study , the total project period t is 90 days

- Requirement change occurred after 75
 - So t1=75 days
 - t2=15 days
 - $P_{v} = 7.315$
- Agility factor A_F is directly proportional to the Project Velocity
- $A_F = K P_v$

- The value of k is assumed as 1
- It was found that requirement changes brings some impact on agility
- In the simulation study only one time the requirement change occurred
- But often it is seen that during development process customers frequently request for requirement change

- Similarly the values of TC,PC,D have higher sensitivity to the evaluation of P_{v1}
- TC, PC, RC and DL which offer a major sensitivity on the $P_{\nu 2}$
- Optimization is therefore necessary to control overall agility
- Since parameters also can vary with time it may be necessary to optimize these parameters to maximize agility

Conclusions

- Proposes a novel method for quantitative estimation of the agility
- Uses the parameter 'project velocity'
- The proposed method envisages a fuzzy knowledge based model to measure agility

Conclusion

- An important aspect of this study is that this modeling has been done based on the statistical data and expertise available from domain experts
- Has also revealed that the dependence of some of the input parameters on agility is more significant than others
- A topic of future research will be optimizing the agility based on the input parameters

References

- 1. Tsourveloudis, Nikos; Phillis, Y.A., 1998, "Manufacturing flexibility Measurement: A Fuzzy Logic Frame Work", *IEEE Transactions on Robotics and Automation* Vol 14 no4 pp513-524.
- 2. Kurian ,Tisni ,2005, "Agility in IT : Creating Software through Agile Techniques ".*Proceedings of the IEI-International Conference on Agility Design and Manufacturing(ADEMSE-05)*, Bangalore ,India
- 3. Kurian ,Tisni, 2006, "Agility Metrics: A Quantitative Fuzzy Based Approach for Measuring Agility of a Software Process" *IEE- ISAM-Proceedings of International Conference on Agile Manufacturing'06(ICAM-2006),* Norfolk, U.S.A
- Kurian ,Tisni , Poonacha ,K.M , Raghu G.S ,2007 ,'SIPL –Agile Estimator : A design Approach to Fuzzy-Based Software for Estimating Agility",*International Journal on Agile Manufacturing*,Volume 10 , Issue 2.
- 5. Poonacha,K.M;Kurian, Tisni;Bhattacharya,Subir,2010;" Metric for Measuring Agility ", PGDCM Thesis Report,I.I.M-Calcutta ,India.
- 6. Charlene A. Yauch, (2011) "Measuring agility as a performance outcome", *Journal of Manufacturing Technology Management*, Vol. 22 Iss: 3, pp.384 404

© 2011 Larsen & Toubro Limited : All rights reserved